Global Organic Weather Cycles and the Origin of Life
Planetary-Scale Infrastructures for Prebiotic Chemical Evolution on Terrestrial Planets

Louisa Lammar

Due to the universality of chemical physics, planetary processes capable of supporting chemical evolution on the early Earth will also be found in analogous hydrological cycles on any terrestrial planetary body. For just as the biochemistry of contemporary organisms can be viewed as a "fossil record" of the growth, so is the geophysical physics of the contemporary earth as an indicator of the self-organizing dynamic processes underlying prebiotic chemistry on any Earth-like planet (Lammar 2011).

Those insights flow from a more complete understanding of water at all scales and perspective of its chemical physics in locally non-equilibrium geologically realistic environments. The application of a mechanical deterministic results in the Lagrangian-Foster stability, which in turn is shown by surface free energy considerations to be mole-stabilized by solar organic surfactants. The condensation of all mass transfer leads directly to the creation of a complex planetary-scale hydrological cycle, a generalization of the terrestrial (water-driven) cycle modified by the geological boundary conditions of the extraterrestrial body in question (Lammar and Tong 2004).

The fluid interfaces determined by these phase boundaries are regions where the chemistry takes quite different pathways than in the bulk homogeneous environment. It has been experimentally determined that at such interfaces:

- Organics, metals, and phosphates are selectively concentrated and stabilized on nanoscale-driven surfaces.
- Experience cycles of reversibly anorganous and short-lived non-equilibrium energizer capable of driving condensation reactions.
- These geophysical/geochemical micromomentos allow for new classes of reactions to occur under a broad range of likely prebiotic conditions.

Hydrologically-based 'weather cycles' on terrestrial-like planets could have supported much of the organic chemical self-organization necessary for an independent origin of life.

All of the cycles result from a distinct water surface (a Rayleigh–Taylor instability) metastabilized by polar organic molecules (perigrenes).

A Single Stage of the Cycle
- Bubble formation.
- Assemble into active materials.
- Bubble dissolution:
 - Non-equilibrium energetics of bubble building (leading to quantized members of high-T stable.
 - Organic manifold and solvated instead, as well as clay particles are prebiotically associated onto the surface of the bubble.
 - The solvated processes leading to a highly concentrated metabolite, the solvate organo-mic Polyol molecule or stable.
 - A dissolving bubble needs an organic molecule that can then nucleate still further formation, or it can be dissolved in turn by other bubbles.
 - The bursting of bubbles impacts into the atmosphere particulate matter also forms organic sucrose.
 - These insoluble materials are then coupled to aerosol formation and the subsequent realization of atmospheric condensation, leading to the multi-phase chemistry and physics associated with rain and snow.

Application to Prebiotic Terrestrial Planetary Environments

The hypothesis of the fundamental role played by the Bubble-Aerosol-Droplet Cycle offers the potential to overcome a number of stumbling blocks in the current field of prebiotic chemistry (Lammar 2010, Lammar and Tong 2004), in particular it addresses the problem of self-assembly, concentration, and stabilizations of organic products in prebiotic chemistry. The Bubble-Aerosol-Droplet Cycle offers the possibility of non-equilibrium homogenous-chemical processes different from conventional solution chemistry, as well as the possibility of coupling a supply of non-equilibrium free energy to chemical processes and particle condensation mechanisms. Especially important is the stimulating of condensation reactions through the creation of relatively non-energetic chemical environments within an aqueous medium.

Cycling of hydrophilic-phosphate solvates is easily produced, and with a high surface area to volume ratio for the required substrate. A wide range of initial conditions of chemical phase space are sampled, and just as importantly, once organics enter into the bubble cycle, they tend to remain within it. All of this above processes are spatially localized and temporally coincident, with the Bubble-Aerosol-Droplet Cycle providing a natural macroscopic framework for the microscopic realization of the majority of specific chemical model environments developed by others.

Showneng Zhang has called the sea-surface microbubbles/bubble-aerosol hypothesis one of the two most important new ideas when considering the geologic setting of potential prebiotic processes (the other being the underwater microenvironments of black smoker communities). Overall it is a new methodological approach whose strong phenomenological basis in contemporary geophysics and geochemistry underscores its importance in the reconstruction of chemical evolution.

"The experimental evidence obtained in this work support the hypothesis...developed by Lammar, in which the aerosol droplets behave as a microscopic chemical reactor that offers a number of potential advantages for biogenic synthesis. (Ruiz-Bermejo et al. 2007)

The Concentration of Organics, Phosphates, and Metals

Two key metals enriched in these bubble-generated processes include Fe, Zn, Mg, Cu, Ni. The concentrations of these metals can be greater than 10^8 compared with those in the bulk solution. Phosphates which are often the limiting factor in ecosystems can be enriched 1000-fold. Bubble releases can scavenge out of solution selected organic materials of less than 10^-10 mole concentration. Organic environmental assessment is a new tool for quantification.

Unique Non-Silicobilin Chemical Energetics

On an early Earthlike were there so great range of acoustic oscillation energies, ranging from ocean waves to near-surface geophysically active regions (submarine venting) to meteoric impacts on an ocean-like sea, and of course accompanying all will be the ubiquitous bubble. Also, sintering creates regimes of nonaqueous energetic quiescence unlike any other in the terrestrial environment.

The rapid contraction of bubbles is associated with adiabatic compression of the internal gas and, therefore, with heating throughout the surface. This heat would accelerate any chemical reactions up to a factor of 10^8. This adiabatic heat, existing in otherwise cold regimes, can have struck temperatures of 5000 K, mobilize pressures, and heating rates of 10^8 K/s (see figure).

For a rough comparison, these are, respectively, the temperatures of the sun, the pressure at the bottom of the ocean, the lifetime of a lightning bolt, and a million times faster cooking than a red-hot iron ploughed into water. Thus, sintering serves as a means of concentrating the diffuse energy of sound into a chemically useful form. (Scott 1984)

Organic Synthesis

Organic molecules of potential bioicenosis interest obtained in the presence of an aerosolic aerosol (as water droplet figures below) give greater amounts and diversity than the material obtained using the same conditions without aerosol. This experimental evidence obtained in the work supports the hypothesis...developed by Lammar, in which the aerosol droplets behavior as a microscopic chemical reactor that offers a number of potential advantages for biogenic synthesis. (Ruiz-Bermejo et al. 2007; see chemist yeast figures below)

Since the essential chemical physics driving these reactions exist solely at the surface (i.e., the air-water interface), it does not matter if the water is 3 inches or 3 miles deep.